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We consider the dynamics of a spatially flat universe dominated by a self-interacting
nonminimally coupled scalar field. The structure of the phase space and complete phase
portraits for the conformal coupling case are given. It is shown that the nonminimal
coupling modifies drastically the dynamics of the universe. New cosmological behaviors
are identified, including superinflation (Ḣ > 0), avoidance of big bang singularities
through classical birth of the universe from empty Minkowski space, and spontaneous
entry into and exit from inflation. The relevance of this model to the description of
quintessence is discussed.

1. INTRODUCTION

The description of the matter content of the cosmos with a single scalar field
is appropriate during important epochs of the history of the universe (Kolb and
Turner, 1994). In this article, a dynamical system approach to a self-consistent
nonsingular cosmological history is presented in the framework of the classical
Einstein equations with a nonminimally coupled scalar field. The complete struc-
ture of the phase portrait and of the dynamical behavior is presented for the case of
a scalar field conformally coupled to the space-time curvature and with a quartic
self-interaction potential. This exhaustive analysis is made possible because of
the reduction of the dynamics to a two-dimensional manifold embedded in the
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original three-dimensional phase space, a general property shown earlier by some
of the authors (Gunziget al., 2000a–c) for a classical scalar field in a spatially
flat universe with arbitrary self-interaction potentials and arbitrary coupling to the
curvature. Solutions with special dynamical interest are identified, namely hetero-
clinic and homoclinic solutions in the reduced two-dimensional phase space, and
their relevance to a possible classical birth of the universe from empty space is
discussed. We recall that heteroclinic trajectories in a phase space correspond to
bounded solutions connecting two different fixed points. Typically, they play the
role of separatrices, determining regions of the phase space with qualitative dis-
tinct dynamical behaviors. Homoclinic trajectories, on the other hand, correspond
to solutions starting and ending at the same fixed point. Their relevance to chaotic
motions has been intensively discussed in the literature (Ozorio de Almeida, 1994).
Despite the fact that the model presented here has no chaotic behavior, its homo-
clinic solutions will probably mark candidate regions of the phase space for chaotic
motions if a small perturbation to the equations is introduced.

Our model consists of a universe filled with a self-interacting nonminimally
coupled scalar field. A crucial ingredient of the physics of scalar fields in curved
spaces is their nonminimal coupling to the scalar curvatureRof space-time, which
is required by first loop corrections (Birrell and Davies, 1980; Ford and Toms,
1982; Nelson and Panangaden, 1982; Parker and Toms, 1985), by specific particle
theories (Faraoni, 2000), and by scale-invariance arguments at the classical level
(Callanet al., 1970). It is well known that nonminimal coupling dictates the success
or failure of inflationary models (Abbott, 1981; Futamase and Maeda, 1989); more
generally, it turns out to strongly affect the cosmic dynamics, which is qualitatively
richer than in the minimally coupled case. We show, indeed, that nonminimal
coupling leads to new dynamical behaviors, such as a regime that we propose
to call superinflation(Ḣ > 0), which cannot be achieved with minimal coupling
(Liddle et al., 1994), and spontaneous entry into and exit from inflation, with or
without a cosmological constant. Spontaneous superinflation provides a classical
alternative to semiclassical birth of the universe from empty Minkowski space
(Gunziget al., 2000a–c; Gunzig and Nardone, 1987), which is impossible with
minimal coupling.

In the next section, we review our model, recently proposed in Gunziget al.
(in press), and give some definitions. The aspect of the phase portraits are presented
in Section 3. Section 4 is devoted to the asymptotic analyses of some special
solutions. The last section contains the concluding remarks.

2. THE MODEL

We consider the nonminimally coupled theory described by the action

S= 1

2

∫
d4x
√−g

(
−R

κ
+ gµν∂µψ∂νψ − 2V + ξRψ2

)
, (1)
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whereR denotes the scalar curvature,ψ is the scalar field,κ ≡ 8πG (G being
Newton’s constant), andξ is the nonminimal coupling constant. A cosmological
constant3, if present, is incorporated in the scalar field potentialV(ψ). We use
the fully conserved scalar field stress–energy tensor

Tµν = ∂µψ∂νψ − ξ (∇µ∇ν − gµν¤)(ψ2)+ ξGµνψ
2− 1

2
gµν(∂αψ∂

αψ − 2V(ψ))

(2)

(whereGµν is the Einstein tensor), thereby avoiding the widespread effective cou-
pling κeff = κ(1− κξψ2)

−1
in the Einstein equationsGµν = κTµν . We consider

here the dynamics of a spatially flat Friedmann–Robertson–Walker universe with
line elementds2 = dτ 2− a2(τ )(dx2+ dy2+ dz2). This yields the trace equation
R= −κ(σ − 3p), the energy constraint 3H2 = κσ (which guarantees that the
energy densityσ ≥ 0), and the Klein–Gordon equation. More explicitly,

6[1− ξ (1− 6ξ )κψ2]( Ḣ + 2H2)− κ(6ξ − 1)ψ̇
2− 4κV + 6κξψ

dV

dψ
= 0, (3)

κ

2
ψ̇

2+ 6ξκHψψ̇ − 3H2(1− κξψ2)+ κV = 0, (4)

ψ̈ + 3H ψ̇ + ξRψ + dV

dψ
= 0. (5)

The (time-dependent) equation of state of theψ field, rather than being imposed
a priori, follows self-consistently from the dynamics. In the trace equation (3),
the second derivativëψ that appears in the pressure has been replaced by its
expression given by the Klein–Gordon equation. Clearly, in the set of Eqs. (3)–(5),
the subsystem [(3) and (4)] is a closed implicit two-dimensional system forψ and
H = ȧ/a (note that this dimensional reduction is not possible for spatially curved
universes (Amendolaet al., 1990; Gunziget al., 2000a–c). After solving these
implicit equations forψ̇ andḢ , one has

ψ̇ = −6ξHψ ± 1

2κ

√
G(H, ψ) (6)

Ḣ = 1

1+ κξ (6ξ − 1)ψ2
[3(2ξ − 1)H2+ 3ξ (6ξ − 1)(4ξ − 1)κH2ψ2

∓ ξ (6ξ − 1)Hψ
√
G + (1− 2ξ )κV(ψ)], (7)

where

G(H, ψ) = 8κ2

[
3H2

κ
− V(ψ)+ 3ξ (6ξ − 1)H2ψ2

]
. (8)

Because of the energy constraint (4), the trajectories are restricted to a two-
dimensional manifold6 in the three-dimensional (H, ψ, ψ̇) original phase
space, possibly with “holes” (dynamically forbidden regions) corresponding to
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Fig. 1. Aspect of the two-dimensional manifold6, embedded in the three-dimensional phase space
(ψ, H, ψ̇), for the potential (9). The upper graph represents the “+” sheet, while the lower one depicts
the “−” sheet. In fact, they are not disconnected; the two sheets join smoothly on the boundaryG = 0
of the dynamically forbidden region, corresponding to the shown “holes.” The lines of constantG are
drawn on the sheets.

G(H, ψ) < 0 (cf. Eq. (6)).6 is composed of two sheets corresponding to the pos-
itive or negative sign in Eq. (6). The two sheets smoothly join on the boundary
G = 0 of the dynamically forbidden region. In the present work, we restrict to the
potential

V(ψ) = 3α

κ
ψ2− Ä

4
ψ4− 9ω

κ2
, (9)

consisting of a mass term, a quartic self-coupling, and possibly, a cosmological
constant term. For consistency with previous works (Gunziget al., 2000a–c) we
use the symbolsα ≡ κm2/6 (m being the scalar field mass) andω ≡ −κ23/9.
Figures 1 and 2 present some aspects of6 for the potential (9). However, several
of our main results do not depend on the details ofV(ψ).

3. PHASE SPACE PORTRAITS

In the following, for simplicity, we project the dynamics of the phase space
onto the (H, ψ) plane, but the true nature of6 should always be kept in mind.
The fixed points of the system [(3)–(5)] include de Sitter solutions with constant
scalar field

H2
0 =

3(α2−Äω)

κ(Ä− 6ξα)
, ψ2

0 =
6(α − 6ξω)

κ(Ä− 6ξα)
(10)

(Ä 6= 6αξ ), and the solutions (H, ψ) = (±√−3ω/κ, 0). The fixed points (10) ex-
ist also forω = 0 because of the presence of the matter fieldψ (in this case, the
two points (±√−3ω/κ, 0) collapse into the Minkowski space fixed point, which
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Fig. 2. Zoom, near the origin, of the two-dimensional manifold
6, embedded in the three-dimensional phase space (ψ, ψ̇ , H ), for
the potential (9). The two sheets join, forming two symmetric cones
with their apex at the origin. Only the cone corresponding toH > 0
is presented here, and the lines of constantH are drawn.

is at the apex of the cones described in Fig. 2). Here, we restrict ourselves to the
case of conformal coupling,ξ = 1/6.

The function

L(ψ, ψ̇) = 1

2
ψ̇

2+ α
4
ψ4− 3ω

κ
ψ2+ V(ψ) (11)

is such thatdL/dt = −3H ψ̇
2

along the trajectories. ForH > 0, L is a Lyapunov
function in a region containing the origin; the solutions are then confined by
closed lines of constantL, implying asymptotic convergence to the fixed points
on theH axis (from Eq. (4), ifψ andψ̇ vanish,H goes toV(0)). This behavior
is confirmed by exhaustive numerical simulations (Gunziget al., in press) and
reported in the following. We first exclude a cosmological constant by setting
ω = 0. The phase portrait qualitatively differs according to the ratioÄ/α.

3.1. The CaseΩ = 2α

The Minkowski space (H, ψ, ψ̇) = (0, 0, 0) is a fixed point, attractive for
H > 0 and repulsive forH < 0; the projections of the de Sitter spaces (±H0,
±ψ0, 0) are saddle points, i.e., they possess attractive and repulsive eigendirections
in the phase space (Fig. 3(a)). They are of two kinds: expanding (Hψ > 0) or
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Fig. 3. Qualitative phase portraits for the system [(3)–(5)]. Shadowed regions correspond to the
dynamically forbidden regions (G(H, ψ) < 0, cf. Eq. (6)). (a)–(e) were obtained by usingÄ/α =
2, 5, 3/2, 3/2, and 1/2, and respectively,ω = 0; (f) corresponds to the caseω = 1/10 andÄ/(α −
ω) = 3/2.

contracting (Hψ < 0). The following solutions, present only in this particular
case,

H (τ ) =
√

C

2
tanh(
√

2Cτ ), ψ = ±ψ0 ≡ ±
√

6

κ
(12)

(whereC = Ḣ + 2H2 = −R/6 is constant) correspond to heteroclinic straight
lines connecting de Sitter fixed points, starting along the repulsive eigendirection
of one of them and ending along the attractive eigendirection of the other (Fig. 3(a)).
They are tangent to the boundary of the forbidden regions at (H, ψ) = (0,±ψ0).
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For |H | > √C/2, another straight-line solution is obtained from the general form

H (τ ) =
√

C

2

w1 e
√

C/2τ − w2 e−
√

C/2τ

w1 e
√

C/2τ + w2 e−
√

C/2τ
, ψ = ψ0, (13)

wherew1 andw2 are integration constants. The nonsingular solutions (12) connect
a contracting (τ →−∞) de Sitter regime to a minimum nonvanishing value of
the scale factor (τ = 0), and then to an expanding de Sitter regime (τ →+∞).

In addition to these straight lines, we found numerically other heteroclinic
solutions: one starting at (H, ψ) = (0, 0) and ending at (−H0, ψ0), and another
one from (H0, ψ0) to (0, 0). A third solution starts at the expanding de Sitter point
and goes to infinity, while another one comes from infinity and arrives to the
contracting de Sitter point. The phase portrait is symmetric about the origin.

Near the fixed point (0, 0, 0), numerical analysis confirms the peculiar be-
havior suggested by the Lyapunov function: orbits approaching this point with
positiveH are attracted to it, bouncing back and forth infinitely many times off the
G = 0 boundary in the (H, ψ) projection (Fig. 3(a)). In the space (H, ψ, ψ̇) these
orbits are seen to spiral down on a cone toward its apex at the origin. The cone
results from the union of the two sheets in the vicinity of the origin, as it is shown
in Fig. 3. Along the spiral, the orbit passes almost periodically from one sheet
to the other, with periodτbounce= 2π/m (τbounceis obtained from the asymptotic
analysis of the next section. Typically, after a few bounces, the period coincides
with τbounce, with good accuracy). A similar behavior forÄ < 0 was reported in
the earlier numerical analysis of Amendolaet al. (1990), but using the effective
couplingκeff(τ ) and the variablesψ andψ̇ .

In theH < 0 half-plane, the situation is reversed: orbits starting withH < 0
are repelled by the origin and depart from it bouncing off theG = 0 boundary.

3.2. The CaseΩ > 2α

The situation (Fig. 3(b)) is analogous to the previous one, but now the straight
heteroclinic solutions are missing, and are replaced by the solution starting at
the contracting de Sitter fixed point and escaping to infinity, and by the solution
coming from infinity and arriving to the expanding de Sitter point. The two-sheeted
structure of6 implies that no actual intersections occur between different orbits
in Fig. 3(b), which live in different sheets but are projected on the same plane.

3.3. The Caseα < Ω < 2α

As shown in Fig. 3(c), there are no straight heteroclinic lines but new interest-
ing features emerge. A new heteroclinic solution appears starting from the origin
and ending in the expanding de Sitter fixed point. As in the previous case, the
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quadrant (ψ > 0, H < 0) is obtained from the (ψ > 0, H > 0) one by reflection
about theψ-axis and time-reversal in Fig. 3(c).

The crucial feature of this case is the appearance of a dense set of homoclinic
solutions (Fig. 3(d)) departing from the origin with negativeH and returning to it
with positiveH , going around the forbidden region. Superinflation plays a central
role along these orbits; only a regime witḣH > 0 permits the smooth transition
from an initial contracting (H < 0) phase to an expanding one (H > 0). This tran-
sition occurs at the nonvanishing minimum of the scale factor. The behavior of this
family of homoclinics, as well as of the other solutions, is universal: they rapidly
converge in the spiraling region near the origin, irrespective of initial conditions.
Since all these homoclinics originate from a neighborhood of the Minkowski fixed
point because of its own instability with respect to perturbations withH < 0, and
come back to that point because of the stability for perturbations withH > 0, this
behavior constitute a classical alternative to the previously proposed semiclassi-
cal birth of the universe from empty space (Gunziget al., 2000a–c; Gunzig and
Nardone, 1997).

3.4. The Case 0< Ω < α

The fixed points (10) disappear and the only bounded solutions are the ho-
moclinics associated with the origin (see Fig. 3(e)). This situation is therefore the
most favorable for the classical spontaneous exit from empty Minkowski space.

3.5. The Caseω < 0

Analogous results hold if a small cosmological constant is present (see
Fig. 3(f)), with the phase portrait being classified according toÄ/(α − ω), but
the fixed point (0, 0, 0) of theω = 0 case splits into two de Sitter fixed points with
memory of the previous stability properties. Now, the approximate period between
two consecutive bounces is

τbounce= 2π√
m2+ 3ω

4κ

. (14)

4. ASYMPTOTIC ANALYSIS

For the conformally coupled case, the trace and the Klein–Gordon equa-
tions (3) and (5), after a rescaling and the explicit substitution of the Hamiltonian
constraint (4), read

Ḣ + 2H2− αψ2+ 6ω = 0
(15)

ψ̈ + 3H ψ̇ + 6(α − ω)ψ − (Ä− α)ψ3 = 0.
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We have special interest in the asymptotic behavior of the solutions of (15) in the
vicinity of the attractive fixed points. Let us start with the caseω = 0. In this case,
our region of interest is the neighborhood of the origin withH > 0. We search for
asymptotic solutions of the form

ψ(t) = f1(t)

t
+ f2(t)

t2
+O(t−3)

(16)

H (t) = g1(t)

t
+ g2(t)

t2
+O(t−3),

with f1(t), f2(t), g1(t), andg2(t) bounded for larget . Inserting (16) in the Eqs. (15)
one has

1

t
( f ′′1 + 6α f1)+ 1

t2
( f ′′2 − 2 f ′1 + 3g1 f ′1 + 6α f2) = O(t−3)

(17)
1

t
g′1+

1

t2

(
g′2− g1+ 2g2

1 − α f 2
1

) = O(t−3).

By demanding the exactness of (17) up tot−3 order, one gets immediately thatg1

is a constant andf1 = A cos(
√

6αt + δ), leading to

f ′′2 + 6α f2 = A
√

6α(3g1− 2) sin (
√

6αt + δ), (18)

which has the general solution

f2 = B cos (
√

6αt + θ )− A(3g1− 2)

2
√

6α

× (cos (
√

6αt + δ)
√

6αt − cos (
√

6αt) sinδ). (19)

In order to guarantee the boundedness off2, it is necessary to haveg1 = 2/3. From
the equation corresponding to thet−2 term in the trace equation, we have

g′2 = A2α cos2(
√

6αt + δ)− 2

9
, (20)

which is solved by

g2 = A2α

2
√

6α
(cos (
√

6αt + δ) sin (
√

6αt + δ)+ δ)+
(

A2α

2
− 2

9

)
t. (21)

Again, by requiring the boundedness ofg2 for larget , we get the conditionA =
2/(3
√
α). We have, finally, the following asymptotic solution for theω = 0 case:

ψ(t) = 2 cos
√

6αt

3
√
αt

+O(t−2)
(22)

H (t) = 2

3t
+O(t−2).
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From (22) we can obtain the characteristic periodτbounce= 2π/
√

6α. Also, the
asymptotic solution (22) implies that all solutions ending in the origin will behave
as matter-dominated universes for larget , corresponding toa(t) ∝ t2/3.

The case with a small cosmological constant can be treated analogously,
taking into account that now the relevant fixed point isψ = 0 andH = √−3ω.
The search for asymptotic solutions of the form

ψ(t) = f1(t)

t
+ f2(t)

t2
+O(t−3)

(23)

H (t) = g0(t)+ g1(t)

t
+ g2(t)

t2
+O(t−3),

with f1(t), f2(t), g0(t), g1(t), andg2(t) bounded for larget , as before, give rise to
the equations

1

t
( f ′′1 + 3g0 f ′1 + 6(α − ω) f1)+ 1

t2
( f ′′2 − 2 f ′1

+ 3(g1 f ′1 + g0 f ′2 − g0 f1)+ 6(α − ω) f2) = O(t−3)
(24)

(g′0+ 2g0+ 6ω)+ 1

t
(g′1+ 4g0g1)+ 1

t2

× (g′2− g1+ 4g0g1+ 2g2
1 − α f 2

1

) = O(t−3).

Our asymptotic equations are now considerably more complicated, but never-
theless, we can obtain an unambiguous periodτbounce. From (24), one has that
g0 decreases exponentially to the value

√−3ω for large t , implying that f1

converges to the formf1 = A exp(−3
√−3ωt/2) cos (

√
6α + 3ω/4t + δ) from

which one can obtainτbounce= 2π/
√

6α + 3ω/4. The scale factor, in this case,
obeysa(t) ∝ exp

√−3ωt for larget , as in the de Sitter universe.

5. DISCUSSIONS

The (H, ψ) plane is divided into sectors by the straight linesH = ±√α/2ψ,
H = ±√αψ , and H = ±√2αψ corresponding, respectively, tȯH = 0, ä = 0,
and pressurep = 0 (theH -axis corresponds top = σ/3). The linesH = ±√α/2ψ
mark the transition between inflationary (ä > 0 andḢ ≤ 0 and superinflationary
(Ḣ > 0) regimes. The linesH = ±√αψ divide regions corresponding to infla-
tion and to decelerated expansion, whileH = ±√2αψ divide regions of positive
and negative pressures (Fig. 4). The crucial condition for superinflation to occur
is that the lineḢ = 0 (or parts of it) should belong to the dynamically accessi-
ble regionG ≥ 0 of the (H, ψ) plane. This implies that, for an arbitrary potential
V(ψ), superinflation corresponds toψ dV/dψ ≤ 0 (this result will be discussed
in detail elsewhere). For our particular potential (9), this requiresÄ > 0. The
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Fig. 4. The plane (H, ψ) for theω = 0 case and the equation of state
for ψ . The darkest region corresponds to the superinflation regime
(Ḣ > 0). During the bounces of theψ solution in the regionḢ < 0,
its equation of state corresponds to, respectively, radiation domination
(crossing theH -axis), matter domination (p = 0), and reacceleration
(betweenG = 0 andä = 0 lines). These oscillations are damped as
τ →+∞; the universe becomes matter dominated (i.e.,a(τ ) ∝ τ2/3

and tends to infinite dilution).

superinflationary behavior occurs only once along each homoclinic and brings the
solution from the primordial Minkowski neighborhood to the succession of eras
corresponding to different equations of state (during each bounce), toward infinite
dilution and equation of statep = 0. In fact, asymptotic analysis forτ →+∞ and
for any value ofα andÄ (with ω = 0) shows that the scale factora(τ ) exhibits os-
cillations of concavity corresponding to accelerated and decelerated epochs. These
oscillations are damped asτ →∞; in this regime,a(τ ) ∝ τ 2/3 and the universe
becomes matter dominated.

While it is not claimed here that the evolution of our universe is modeled by
an entire orbit of the system [(3)–(5)] on the accessible manifold6, the application
to specific eras of the cosmological history is intriguing. Indeed, in the bounces
reported above (during whicḣH < 0), one encounts, respectively, radiation dom-
ination crossing theH -axis, matter domination (p = 0), acceleration (a possible
quintessence model?) until the next bounce in the (H, ψ) projection, where this
sequence is reversed.

If we identify one period as our cosmological history, then the reported accel-
erated expansion of the universe today (Perlmutteret al., 1998, 1999; Riesset al.,
1998) suggests to locate our epoch in the sector between the lineH = √αψ and
theG = 0 boundary. The identification of the age of the universe (∼1017 s) with
τbouncewould then yield the scalar field massm' 10−13 eV, which is suggestive
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of an axion (Kolb and Turner, 1994) or of an ultralight pseudo-Goldstone boson
(that the quintessence field should be very light was already suggested (Binetruy,
2000).

As a step toward a realistic model, one can include a second scalar field
coupled toψ , which has the meaning of a fundamental field (as is done, e.g., in
hybrid inflation), or mimics a baryonic or other fluid. In spite of the higher dimen-
sionality of the phase space, many of the features exposed here for a single scalar
field survive (Gunziget al., work in progress). Although very simple, we think our
classical model opens interesting avenues to the understanding of quintessence in
terms of a nonminimally coupled scalar field.

Finally, one should keep in mind that our detailed semianalytical analyses are
possible because of the reduction of the original three-dimensional system to a two-
dimensional one on a smooth manifold6, which, in turn, strongly indicates the
absence of chaos (confirmed by an exhaustive numerical analysis). Generically,
such a reduction is not possible for the case of a spatially curved space-time
and/or several matter fields nonminimally coupled to the curvature, despite of
many similar results. This is the object of present investigations (Gunziget al.,
work is progress).
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